Section 5.5 — Hierarchical models#
This notebook contains the code examples from Section 5.5 Hierarchical models from the No Bullshit Guide to Statistics.
Notebook setup#
# load Python modules
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Figures setup
plt.clf() # needed otherwise `sns.set_theme` doesn"t work
from plot_helpers import RCPARAMS
RCPARAMS.update({"figure.figsize": (5, 3)}) # good for screen
# RCPARAMS.update({"figure.figsize": (5, 1.6)}) # good for print
sns.set_theme(
context="paper",
style="whitegrid",
palette="colorblind",
rc=RCPARAMS,
)
# High-resolution please
%config InlineBackend.figure_format = "retina"
# Where to store figures
DESTDIR = "figures/bayesian/hierarchical"
<Figure size 640x480 with 0 Axes>
# set random seed for repeatability
np.random.seed(42)
#######################################################