Section 3.7 — Inventory of statistical tests#
This notebook contains the code examples from Section 3.7 Inventory of statistical tests from the No Bullshit Guide to Statistics.
Notebook setup#
# load Python modules
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Plot helper functions
from ministats import plot_pdf
# Figures setup
plt.clf() # needed otherwise `sns.set_theme` doesn't work
from plot_helpers import RCPARAMS
RCPARAMS.update({'figure.figsize': (10, 3)}) # good for screen
# RCPARAMS.update({'figure.figsize': (5, 1.6)}) # good for print
sns.set_theme(
context="paper",
style="whitegrid",
palette="colorblind",
rc=RCPARAMS,
)
# Useful colors
snspal = sns.color_palette()
blue, orange, purple = snspal[0], snspal[1], snspal[4]
# High-resolution please
%config InlineBackend.figure_format = 'retina'
# Where to store figures
DESTDIR = "figures/stats/inventory"
<Figure size 640x480 with 0 Axes>
# set random seed for repeatability
np.random.seed(42)
#######################################################
Definitions#
Assumptions#
NHST procedure#
Categorization of statistical test recipes#
Z-Tests#
One-sample \(z\)-test#
See the examples/one_sample_z-test.ipynb notebook.
Proportion tests#
One-sample \(z\)-test for proportions#
Binomial test#
Two-sample \(z\)-test for proportions#
from statsmodels.stats.proportion import proportions_ztest
T-tests#
One sample \(t\)-test#
See the examples/one_sample_t-test.ipynb notebook.
Welch’s two-sample \(t\)-test#
(explain pooled variance as special case “Two sample t-test”, but inferior)
Paired \(t\)-test#
Chi-square tests#
Chi-square test for goodness of fit#
Example: are digits of \(\pi\) random?#
pidigits = [99959, 99757, 100026, 100230, 100230, 100359, 99548, 99800, 99985, 100106]
# obtained using np.bincount(list(str(sympy.N(sympy.pi, 1_000_000)).replace('.','')))
os = pidigits # observed
es = [1_000_000/10]*10 # expected (uniform)
from scipy.stats import chisquare
chisquare(f_obs=os, f_exp=es)
Power_divergenceResult(statistic=5.51852, pvalue=0.7869706202650393)
See original blog post for useful historical context about this https://probabilityandstats.wordpress.com/2017/03/14/are-digits-of-pi-random/
Chi-square test of independence#
Chi-square test for homogeneity#
Chi-square test for the population variance#
Analysis of variance (ANOVA) tests#
One-way analysis of variance (ANOVA)#
Two-way ANOVA#
Nonparametric tests#
Use when assumptions for other tests not valid
Sign test for the population median#
via https://vitalflux.com/sign-test-hypothesis-python-examples/
from scipy.stats import binomtest
n_pos = 6
n_neg = 9
n_min = min(n_pos, n_neg)
n_tot = n_pos + n_neg
# Calculate p-value (two-tailed) using the binomial test
binomtest(k=n_min, n=n_tot, p=0.5, alternative='two-sided')
BinomTestResult(k=6, n=15, alternative='two-sided', statistic=0.4, pvalue=0.6072387695312499)
n_max = max(n_pos, n_neg)
binomtest(k=n_max, n=n_tot, p=0.5, alternative='two-sided')
BinomTestResult(k=9, n=15, alternative='two-sided', statistic=0.6, pvalue=0.6072387695312499)
One-sample Wilcoxon signed-rank test#
Mann-Whitney U-test#
example via https://www.reneshbedre.com/blog/mann-whitney-u-test.html
dfw = pd.read_csv("https://reneshbedre.github.io/assets/posts/mann_whitney/genotype.csv")
dfw.shape
# dfw
(23, 2)
from scipy.stats import mannwhitneyu
mannwhitneyu(x=dfw["A"], y=dfw["B"], alternative="two-sided")
MannwhitneyuResult(statistic=489.5, pvalue=7.004695394561307e-07)
Kruskal-Wallis analysis of variance by ranks#
Resampling methods#
Simulation tests#
from ministats.hypothesis_tests import simulation_test
%psource simulation_test
Two-sample permutation test#
from ministats.hypothesis_tests import permutation_test
%psource permutation_test
Permutation ANOVA#
from ministats import permutation_anova
%psource permutation_anova
# test on three samples
from scipy.stats import norm
# Random samples
np.random.seed(43)
sample1 = norm(loc=0).rvs(size=30)
sample2 = norm(loc=0).rvs(size=30)
sample3 = norm(loc=0.7).rvs(size=30)
np.random.seed(45)
permutation_anova([sample1, sample2, sample3])
0.0297
# compare with analytical formula
from scipy.stats import f_oneway
f_oneway(sample1, sample2, sample3)
F_onewayResult(statistic=3.6808227678358856, pvalue=0.029206733498721497)
Equivalence tests#
See examples/two_sample_equivalence_test.ipynb for an example.